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Is Mathematical Logic Really Necessary in 

Teaching Mathematical Proofs? 
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As it is already observed by mathematicians and educators, there is a 

discrepancy between the formal techniques of mathematical logic and the 

informal techniques of mathematics in regards to proof. We examine some of 

the reasons behind this discrepancy and to what degree it affects doing, teaching 

and learning mathematics in college. We also present some college studentsô 

opinions about proofs, and we briefly observe the situation in Greek and Greek-

Cypriot high schools in which mathematical logic is part of the curriculum. 

Finally, we argue that even though mathematical logic is central in mathematics, 

its formal methods are not really necessary in doing and teaching mathematical 

proofs and the role of those formalities has been, in general, overestimated by 

some educators.  
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Introduction  

 

In several colleges, some parts of mathematical logic (i.e. sets, propositional 

logic, and predicate logic) are usually taught in the early chapters of a discrete 

mathematics class, in order to prepare the students for the important chapter on 

proofs and proving techniques. Yet, most likely, students have already been 

exposed to proofs before the above-mentioned course in other mathematics 

courses or even in high school. Mathematical logic is to sharpen the logical and 

analytical skills of a student as these are necessary for the understanding and 

learning of mathematical proofs. Mathematical logic though is characterized by its 

symbolic presentation and formal rules. Mathematics, on the other hand, combines 

mathematical symbolism and natural language and its methods are rigorous yet 

less formal.  

Historically, logic is associated with Aristotle and his work the Organon in 

which he introduced terms like "propositions" and "syllogisms", the basics on 

categorical and hypothetical syllogism, and modal and inductive logic. It is also 

associated with the Stoics and their propositional logic, and their work on 

implication. Syllogistic logic and propositional logic led later to the development 

of predicate logic (or first order logic, i.e. the foundational logic for mathematics) 

by Frege and Hilbert in the 19
th 

century. As Ferreiros said: 

 
"First-order logic emerged as an analysis of the most fundamental basis for the notion 

of mathematical proof. To put it otherwise, it emerged as the logic that is necessary 
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and sufficient for codifying mathematical proofs, axiomatizing mathematical 

theories, and studying their metatheory." (Ferreiros, 2001, p. 479) 

 

Predicate logic is also the foundation of modern mathematical logic. The 

latter is a subfield of mathematics that includes fields such as set theory, model 

theory and proof theory, and its primary interests are the foundations of 

mathematics and theoretical computer science. 

The interest in the foundations began in the 19
th
 century with the development 

of axiomatic frameworks for geometry and arithmetic by Hilbert and Peano 

respectively. That led in the early 20
th
 century to three main philosophies 

regarding the foundations of mathematics, namely Logicism, Formalism and 

Intuitionism, none of which adequately accounts for those foundations. Gödel 

pointed out the issues of consistency and completeness related to provability in 

general formal systems. Nevertheless, most mathematics can be formalized in 

terms of sets, and set theory serves nowadays as its foundation. In real 

mathematical practice though rarely one adheres to set-theoretical foundations to 

validate or refute mathematical questions. Each mathematical field has its own 

tools and methods and with general logical framework the predicate logic explores 

its own questions, proves its own theorems, and establishes connections between 

fields. Even though mathematical logic is central in mathematical practice, its 

strict symbolism and formal rules are rarely used in mathematics, whose 

mathematical symbolism, language and methods are rigorous yet less formal. 

In the subsequent sections, we will look at the differences between the formal 

techniques of mathematical logic and the informal techniques of mathematics in 

regards to proof. We will examine how it affects doing, teaching and learning 

mathematics, give some examples, and present some college studentsô opinions 

about proofs. We will also see what/when logic is taught in Greek and Greek-

Cypriot high schools as it is part of the school curriculum. 

 

 

What is Mathematical Proof? 
 

Even though there is no complete agreement among mathematicians on what 

constitutes a mathematical proof, it is accepted by most that proof is a central 

activity in mathematics. A proof is basically a line of reasoning that mathematicians 

would employ in order to convince someone about the truth of a mathematical 

statement. A mathematical proof is usually written in an algerbraic-symbolic form, 

mixed with natural language, and it has among others the following basic 

objectives: (a) verification, (b) discovery, (c) explanation, (d) communication, (e) 

challenge, (f) systematization. This is what is usually characterized as "informal 

proof" and what most practicing mathematicians usually do and understand as 

proof. As Hersh says: 

 
"Practical mathematical proof is what we do to make each other believe our 

theorems." (Hersh, 1997, p. 49) 
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A proof also could be re-phrased, proved differently, refined, completed, etc. 

All the above play a crucial role in the mathematical progress.  

Students often learn about the different types of proof techniques, such as 

direct proof, proof by cases, proof by contradiction, etc., which are based on some 

basic logical rules of inference such as modus ponens, modus tollens, resolution, 

etc., and their extensions in predicate logic.  

 

Example: If n is an odd integer, then n
2
 is odd. 

 

Proof:  Let n be an odd integer. Then, there exists an integer k such that n = 2k + 1. 

 Squaring both sides of the equation, we have that: 

n
2
 = (2k + 1)

2
 = 4k

2
 + 4k + 1 = 2(2k

2
 + 2k) + 1 = 2λ + 1, where λ = 2k

2
 + 2k. 

Hence, by the definition of odd, we have that n
2
 is odd.  

 

The above proof is a typical (informal) mathematical proof, and is based on 

the modus ponens. That is, on the logical schema: 

 

)]()([ 2xOxOx ­"  
)(nO  

éééé 

)( 2nO\
 

 

where O(x) = "x is odd" and ZÍx . 

 

What about "formal proofs"? A formal proof (derivation) is a sequence of 

steps where from a given set of sentences (premises) one derives another sentence 

(conclusion) using the logical rules of inference. A formal proof has more of a 

syntactic nature, than semantic and employs deductive reasoning rather than other 

forms of reasoning. It is highly rigorous, recalls all relevant axioms and 

definitions, uses and manipulates logical symbols, and emphasizes the verification 

aspect of a proof, and not so the explanatory aspect. So, the previous example 

would be written formally as follows: 

 

Example: If n is an odd integer, then n
2
 is odd. 

 

Proof :   1.   O(x)                   premise 

                    2.  )12( +=$ zxz 1, definition of odd 

                    3. 12 += mx 2, existential instantiation 

                    4. 1)22(2 22 ++= kkx     3, algebra 

                   5.   122 += zx                   4, existential generalization 

                    6.   O(x
2
)                            5, definition of odd 

                    7.  )()( 2xOxO ­               1-6, modus ponens 

                    8.  )]()([ 2xOxOx ­"       7, universal generalization   
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Notice that some mathematicians claim that a proper proof is actually the 

formal proof, or at least that an informal proof is acceptable if a formal proof could 

in principle be constructed. As Rota says: 

 
"A proof of a mathematical theorem is a sequence of steps which leads to the desired 

conclusion. The rules to be followed by such sequence of steps were made explicit 

when logic was formalized early in this century, and they have not changed since." 

(Rota, 1997, p. 183) 

 

Finally, formal proofs are usually checked and constructed using computers 

and they are quite long (see Figure 1) and time consuming. For example, the proof 

of Keplerôs Conjecture by Hales in 2006was more than 250 pages long (Hales & 

Ferguson, 2006), and it took a group of 22 people more than 10 years to formalize 

the proof (Hales et al., 2017).  

 

Figure 1. The proof of the irrationality of 2  in proof assistant Isabelle  

 
Source: Wenzel & Paulson, 2006, p. 42-43. 
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Issues with Formal Logic 

 

Comparing the two proofs in the example above, one can see some 

quantitative and qualitative differences. First, the second proof is a bit longer and it 

can get much longer when the theorems get more interesting. Then, one notices 

that the second proof is not very explanatory or communicative. It is intended to 

deductively verify the theorem, and it reminds of a computer program. As a matter 

of fact, if the above proof were computer-performed, it would also get even longer 

as one would be required to input also all necessary definitions, axioms and 

calculations, in order to arrive to the conclusion. Finally, the second proof is not 

the way that mathematicians do and publish proofs in their field, neither is the way 

they teach their students in mathematics classes.  

But why is that? There are several reasons. We outline some below. 

 

Epistemic Reasons 

 

On the practical level, making proofs unnecessarily longer, less readable, and 

harder to communicate, does not benefit the students or the teachers in terms of 

knowledge. Since proofs are central to the development and transfer of 

mathematical knowledge, they should be in a format that most understand, so 

students or teachers can communicate it to others and motivate discussions that 

could lead to further discoveries. On the theoretical level, could all mathematical 

statements be formalized and proved? Godelôs Incompleteness Theorems impose 

some serious restrictions on provability within a formal system that is large 

enough to handle basic mathematics. Marfori argues quite convincingly that 

formal understanding of proof "yields an implausible account of mathematical 

knowledge, and falls short of explaining the success of mathematical practice" 

(Marfori, 2010, p. 261). She raises two important objections: one referring to the 

circularity of the notion of rigorous proof and one doubting formalismôs 

explanatory power with respect to ordinary mathematical practice.  

 

Not Just Deduction 

 

Even though deductive inference is central in proofs and in mathematics in 

general, it is not the only type of inference in mathematical practice. Peirce 

considers three kinds of logical inference, namely deductive, inductive and 

abductive, which he sees as important stages in mathematical inquiry (Bellucci & 

Pietarinen, 2018). Certainly, deduction allows one to move from some hypotheses 

to a conclusion, but hypotheses and conjectures must be formed in the first place. 

That can be done by induction and abduction by looking at some specific 

examples first, draw analogies, and then generalizing. Deduction, in mathematical 

inquiry, usually comes at the last stage as a way to verify certain observations. 

Polya (1954; 1973) and Lakatos (1976) explain the process of mathematical 

discovery very clearly. For example, Polya lays down some steps for general 

problem solving that include: understanding the problem, experimenting, 
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conjecturing, generalizing, trying to prove and proving or disproving. The steps 

before the proving step are what one would call the inductive/abductive stage
1
.  

 

Intuition also Necessary 

 

Clearly, logic is necessary for doing mathematics. But is it sufficient? As 

Hadamard said: 

 
"[é] strictly speaking, there is hardly any completely logical discovery. Some 

intervention of intuition issuing from the unconscious is necessary at least to initiate 

the logical work." (Hadamard, 1954, p. 112) 

 

In a completed proof, formal or informal, one rarely sees all the mathematical 

activity that preceded the proof. That activity might have included scattered 

thoughts, incomplete notes, calculations, drawing diagrams, experimenting, 

moments of inspiration, several failures, frustration, etc. All these activities are 

sometimes part of the mathematical process, yet they are not part of the logical 

process. And they are not characterized by the deductive nature that usually 

characterizes a proof. A proof seems to comprise all the above in an end result 

argument, and comes after the discovery. And, in general, logic seems to merely 

follow intuition. 

 

Not all are Computer Scientists 

 

In a computer science class, logic is covered not only to serve as a problem 

solving tool, but also, as Hein says: 

 
"[é] for its use in formal specification of programs, formal verification of programs, 

and for its growing use in many areas such as databases, artificial intelligence, 

robotics, automatic reasoning systems, and logic programming languages." (Hein, 

2010, p. vi) 

 

Formal proofs are also covered, usually after informal proofs have been 

covered. As important as Heinôs topics may be, they are not the primary interests 

in a mathematics course, even in a discrete mathematics course which is 

prerequisite to computer science. In mathematics course the emphasis falls on 

informal proofs, their structure and the information they convey, the relation of the 

proved theorems to other theorems, examples, historicals, and, of course, some 

applications to other sciences.  

 

 

                                                           
1
Polya also explains the difference between induction and mathematical induction (a deductive 

process) and gives a nice example applying all the previously mentioned steps (1973, p.114-121). In 

particularly, he proves the theorem "The Sum of the First n Cubes is a Square", showing all the 

previous steps and activity that led one to the theorem, doing calculations, using visuals, forming 

conjectures, etc.  
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Some Objections 

 

With the advancement of computers, programming and computer algebra systems 

in particular, some argue for the use of formal techniques in mathematics for 

philosophical but also pragmatic reasons. For instance:  

 
"-To establish or refute a thesis about the nature of mathematics or related questions 

in philosophy. 

 -To improve the actual precision, explicitness, and reliability of mathematics." 

(Harrison, 2008, p. 1395) 

 

Regarding the first point, Harrison justifies the formalization of mathematical 

proofs by appealing to the foundations of Mathematics. As he says: 
 

"[é] the defining characteristic of mathematics is that it is a deductive discipline. 

Reasoning proceeds from axioms (or postulates), which are either accepted as 

evidently true or merely adopted as hypotheses, and reaches conclusions via chains of 

incontrovertible logical deductions." (Harrison, 2008, p. 1395) 

 

As Harrison continues, in the past, informal methods caused ambiguities and 

errors
2
, and informal proofs bearing the burden of being explanatory lost rigor and 

precision. Hence, it is only natural to utilize the deductive nature of mathematics 

and strive for formalizing proofs and presenting them in a "high-level" conceptual 

way. This way, there are no issues of uncertainty or errors and one is sure of what 

has been proved from given assumptions. A computer program could take over 

this process, as it has already done for several theorems, and help tremendously 

and change the mathematical practice.  

The only problem though is that Harrison puts mathematics on narrow 

foundations. Mathematics is more than just deduction of statements and proof is 

just one of the stages in the mathematical activity
3
, as Lakatos (1976) and Polya 

(1954; 1973) nicely documented in their classic works. Also, as many 

mathematicians explain, axiomatization usually comes at the end of the process 

and not the beginning (Cellucci, 2002). 

Now, regarding Harrisonôs second point, he points to the fact that 

mathematics is applied in society so issues of precision and reliability in 

mathematics, as well as computer science and engineering, are important as they 

can have pragmatic consequences. Hence, it is paramount that not only 

mathematics should be checked for correctness by computer programs, but also 

computer programs should be checked for correctness as well. Harrison recognizes 

the difficulties in this, since computer proof-correctness programs could be usually 

long and tedious with few people understanding them, yet, as he claims, that 

should not be considered as an argument against formal verification of a proof. To 

                                                           
2
Harrison mentions DôAlambertôs false proof of the Fundamental Theorem of Algebra in 1746. One 

could add Gaussô incomplete first proof in 1799 of the same theorem.  
3
A nice presentation of that using the quaternions as an example is in Papastavrides (1983), where 

the author shows the interplay of observation, experimentation, imagination and proof in a famous 

mathematical discovery. 
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the contrary, he suggests that we should invest and improve even more our 

computer methods. 

But, the question of reliability still stands, and if the point is to be sure of a 

proof by mechanically checking it, then how can one be sure of the program that 

checks the proof? Considering that computer checking is long and tedious, 

certainly longer and harder than human checking, does not that defeat the purpose 

of demanding efficiency? For example, the proof of Fermatôs Last Theorem is 

quite long and few mathematicians have read and understood it. Some could have 

doubts regarding its validity, correctness, etc., and that is quite understandable. 

But, writing a complex program ten times longer, that also few people understand 

it, in order to check the theorem, is it something reasonable to pursue? Why not 

giving incentives, as one could suggest, to say ten mathematicians in humanly 

verifying the proof? 

The first automated theorem prover, known as the "Logic Theory Machine" 

was developed in the 60ôs by Newell and Simon (1956). It mimicked the logical 

skills of a human, but it dealt only with theorem proving from propositional logic
4
. 

The first computer proof assistant in mathematics was used in the 70ôs by Appel 

and Haken in the proof of The Four-Color Theorem (improved in the 90ôs by 

Robertson et al.), in which a large number of case checking and calculations was 

done by the computer. That caused a big controversy on what ultimately a proof is 

and whether computer proofs could be considered proofs. In 2005, Gonthier 

(2005; 2008) gave a formal proof of the Four-Color Theorem using the proof 

assistant Coq which automates the whole proof process itself. Also, in the 90ôs, 

Hales gave a large computer assisted proof of Keplerôs Conjecture which, as we 

mentioned in previously, he proved in 2006 and formally proved in 2017 using the 

proof assistant HOL Light. About one hundred other important theorems were 

formalized
5
, including some in the undergraduate level (e.g. the Fundamental 

Theorem of Calculus). So, advocates of formal proof would say that this practice 

is doable and useful, and a natural part of the scientific development and progress.   

But, even though there is no doubt that these are important logical and 

technological achievements, all the above formalized proofs still remain 

philosophically controversial. First, one must distinguish between proof verification 

and proof discovering. Proof assistants are formal syntactical systems based on 

deductive logic that can be used to check whether a set of premises imply a 

conclusion, independently of content and semantics. Discovery requires more than 

logical deduction, for example observation, intuition, etc., and not all proofs are 

deductive. Finally, even though important theorems have been formalized, it does 

                                                           
4
For example, it proved several theorems from Russell's and Whiteheadôs Principia Mathematica. 

Another interesting program was Lenat's program AM ("A Mathematician") in the 70ôs, which 

exhibited also some creative behavior as it was based on some general heuristics. Nevertheless, AM 

has its drawbacks too. See more here: https://bit.ly/2Z4fSEa. 
5
Such as, the First Incompleteness Theorem (by Shankar, Boyer-Moore system, 1986), the 

Fundamental Theorem of Calculus (by Harrison, HOL Light system, 1996), the Fundamental 

Theorem of Algebra (by Milewski, Mizar system, 2000), the Prime Number Theorem (by Avigad et 

al., Isabelle system, 2004), the Four Color Theorem (by Gonthier, Coq system, 2005), the Keplerôs 

Conjecture (by Hales, HOL Light system, 2017), etc. (Wiedijk, 2008; see also: https://bit.ly/2MV0 

O9D). 
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not mean that all theorems can be formalized (Harrison, 2008, p. 1403-1404). 

There are also technical issues which are not in accordance with mathematical 

practice. For example, HOL Light and Mizar systems define 
0

0

1
=

, even though 

it is actually undefined, because the systemsô functions cannot account for 

"undefined" and the algorithms require an input in order to run (Wiedijk, 2008). 

 

In Class 

 

The emphasis given on the foundations of mathematics in the first half of the 

20
th
 century, and the rise of programming, automation and computers in the 60ôs, 

that we described in the previous section, naturally affected education as well. As 

Hana says: 
 

"The hallmark of the mathematics curriculum adopted in the sixties was an emphasis 

on formal proof. Among the manifestations of this emphasis were an axiomatic 

presentation of elementary algebra and increased classroom attention to the precise 

formulation of mathematical notions and to the structure of a deductive system." 

(Hana, 1989, p. 20) 

 

This "new mathematics", as it was usually called, was criticized in the 80ôs by 

Hana (1983, 1989) Kitcher (1984), Davies (1986), Tymoczko (1986) and others, 

and educators we forced to modify the curriculum de-emphasizing formalities, 

rigor and proof, and emphasizing more examples and applications. It has been 

debatable since then, if that was the right approach that should had been followed, 

as complains were raised later regarding the coherence of the material taught and 

the impact of reducing rigor and proof had on the critical skills of the students. 

But, what did some empirical studies show? Deer (1969) found that teaching an 

explicit unit on logic did not have any effect in improving studentsô abilities to 

prove geometric theorems. Cheng at al. (1986) found that college students who 

took introductory logic had no advantage over students who did not take the 

course in solving the Wasonôs Selection Task, yet using concrete examples does 

improve studentsô reasoning abilities. On the other hand, Platt (1967) and Mueller 

(1975) showed that teaching logic was beneficial to geometry students, especially 

if the logic was covered in context. Also, Durand-Guerrier and Arsac (2009), 

Durand-Guerrier et al. (2012) and Epp (2003; 2009) claimed that logic is a useful 

tool in mathematics, yet it should be presented "in a manner that continually links 

it to language and to both real-world and mathematical subject matter" (Epp, 2003, 

p. 895). Similarly, as Durand-Guerrier et al. said, "teaching logic as an isolated 

subject generally appears to be inefficient in developing reasoning abilities" 

(Durand-Guerrier et al., 2012, p. 375).Hence, it seems to me that a safe conclusion 

to be drawn from the above is that logic is useful but it should be done in context.  

In my experience from teaching discrete mathematics, I certainly see the 

relevance of logic to mathematics, but I also noticed the following: 
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a. Students have conceptual difficulties with the semantics (e.g. "Ø", "­", 

etc.) and the scope of propositional logic. For example, some of the 

connectives seem ambiguous or non-sensical. In particular, students 

struggle with the conditional "­" and its truth values
6
. The fact that 

propositions p and q could be false yet the proposition qp­  is true is 

not something that the students can empirically easily accept, especially 

when p and q are unrelated. And justifiably so. Neither this logical fact is 

something that the students use much in proper proofs. Because in 

mathematical proofs, we are mainly interested in starting from true 

premises and arriving at true conclusions and in starting from true 

premises to false conclusions when disproving. The case when the 

premises are false is usually deemed irrelevant. 

b. The formal aspects of logic are quickly dropped, as they are unnecessary. 

Students have already difficulties with informal proofs, so adding extra 

formalities and complicating things even further seems anti-pedagogical. 

Even the few logical rules the students need for mathematical proofs could 

be summarized and included in the beginning of the proof section, without 

much harm done. Much of the previous material, especially on 

propositional logic, could easily be omitted. One could simply start with 

minimal logical rules and the basic axioms of the subject being studied
7
. 

See (Suppes, 1965). 

 

Regarding (b), and motivated by some of the research done already, we also 

asked some of our studentsô input on the matter in a short survey. In two 

questionnaires given to 45 students in two discrete mathematics courses, we asked 

their opinions on some issues related to formal and informal proof and recorded 

their responses (see Appendix). In particularly, in Questionnaire A, students were 

given a formal and an informal proof of the same theorem and were asked which 

they find more rigorous, which they understand better, which is more explanatory, 

etc. In Questionnaire B, students were given a pictorial proof (without words) and 

an informal proof of the same theorem and were asked the same questions as 

above. Their responses are summarized in the Table 1. 

 

Table 1. Responses to the Questionnaires 
Questionnaire A  Question 1 Question 2 Question 3 Question 4 

Proof 1  88.8% 91.1% 84.4% 22.3% 

Proof 2  11.2% 8.8% 15.6% 77.7% 

      

Questionnaire B  Question 1 Question 2 Question 3 Question 4 

Proof 1  4.5% 6.7% 22.3% 26.7% 

Proof 2  95.5% 93.3% 77.7% 73.3% 

 

                                                           
6
More on the "paradoxes" of the conditional see Lewis (1917); Farrell (1979); Mansur (2005). Also, 

for studentsô difficulties with the conditional see Hoyles and Küchemann (2002); Romano and 

Strachota (2016).  
7
An important issue could be raised here, on whether content matters in teaching proofs. 

According to some educators it does. See Savic (2017). 



Athens Journal of Education February 2020 

  

109 

Surely, one could observe the following: 

 
1. Indeed, the sample was small (45 students) and the conclusions are simply 

suggestive, not conclusive. Nevertheless, as the survey was more qualitative than 

quantitative, and many students explained the reasons for their responses, we do 

get a clear glimpse of their opinions on proof.  

2. In Question A.1, contrary to what one would expect, most students found Proof 

A.1(informal proof)more rigorous than Proof A.2 (formal proof). Considering 

their comments, an explanation for that could be that the students relate rigor with 

understanding. Something that they do not really understand clearly, it is perhaps 

pointless to deem it as rigorous. Similarly, in Question B.1, students stated that 

Proof B.2 (informal proof) is more rigorous than Proof B.1 (pictorial proof) due to 

the use of algebra. 

3. In Question A.2, overwhelmingly most students found Proof A.1 (informal proof) 

more explanatory than Proof A.2 (formal proof). As many students explained the 

fi rst proof is easier to follow and understand and shorter. Similarly, in Question 

B.2, students stated that Proof B.2 (informal proof) is more explanatory than 

Proof B.1 (pictorial proof) due to the use of algebra, words, etc. On the contrary, 

in an older questionnaire (see Questionnaire C, in Appendix), more students 

found the Euler Diagram more explanatory than the formal proof in 

understanding the validity of an argument.   

4. In Question A.3, most students found Proof A.1 (informal proof) more prompting 

to explore further similar questions than Proof A.2 (formal proof). Although not 

many clear reasons were given for that, some students stated that the informal 

proof was easier and the same reasoning could be used to deal with other similar 

questions and build similar examples. One student said that algebra related to 

everything in mathematics, so it was a better tool to explore things further than 

diagrams. Similarly, in Question B.3, students stated that Proof B.2 (informal 

proof) was more prompting than Proof B.1 (pictorial proof). 

5.  In Question A.4, most students found Proof A.2 (formal proof) more appropriate 

for computers than Proof A.1 (informal proof). As some students said, that is 

because the formal proof follows order and is written line by line, which is 

perhaps their way to say that it is more deductive. On the other hand, in Question 

B.4, students said that Proof B.2 (informal proof) is more appropriate for 

computers than Proof B.1 (pictorial proof) because computers do not understand 

images and prefer symbols. 

6.  Overall, students found the informal proof more rigorous than both the formal 

and pictorial proofs. More rigorous than the formal proof because it did not 

contain unnecessary information and formalism, and more rigorous than the 

pictorial proof because it contained essential information, notation and 

explanations. It seems that the students followed the middle ground. Also, the 

students found the informal proof more explanatory than both the formal and 

pictorial proofs. Apparently, even a minimal use of natural language plays an 

important role in understanding, as only symbols or figures are not enough. 

Finally, most students believe that more precision, order and symbolism relates 

more to computers.  
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Logic in Greek and Cypriot High Schools 

 

What is the status of logic in Greek and Cypriot high schools? In Greece, at 

the end of the 19
th
 century logic was taught in high schools but it had a more 

theoretical than analytical nature. It emphasized syllogistic logic and lacked 

symbolism. Even though it mentioned proofs (deductive and inductive proofs) the 

examples did not usually come from mathematics, with some exceptions from 

geometry. Also, logic was not part of introductory sections in mathematics books.  

 

Figure 2. A Logic Book for Greek High Schools from 1906 

 

 

 

 

 

 

 
Source: Skliros, 1906. 

 

In the70-80ôs logic, as we cover it today, was incorporated in some 

mathematics books usually as an introductory chapter. It covered the basics on 

propositional and predicate logic, and the examples were mathematical. Proofs 

were covered and, interestingly, they were something between the formal and 

informal proof that we described (see Figure 3). 

 

Figure 3. The Proof of the Same Example we Mentioned Previously 

 
Source: Varouchakis et al., 1983, p.26. 

 

A proper logic text is a book by Kyriakopoulos (1977), in which propositional 

and predicate logic is covered inall detail and all important connections to 

mathematics are mentioned. As a matter of fact, in regards to our discussion on 

formal-informal proof here, Kyriakopoulos interestingly stated
8
 that:  

 
"[é] in mathematics, the proofs of propositions are not presented in the form of 

formal proofs, that we saw in the previous chapters. Formal proofs are long and 

therefore, not only cumbersome, but also time consuming. Due to that and because in 

mathematics logic is considered known, in the proofs of propositions of a 

                                                           
8
My translation.  
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mathematical theory, not all steps are mentioned and the logic rules are not 

particularly emphasized." (Kyriakopoulos, 1977, p. 160-170) 

 

Nowadays, elements of logic are included in an introductory chapter of 

Andreadakis et al. (1998) in the 4
th 

year in high school, but are usually omitted. 

Some methods of proof (direct and by contradiction) are discussed in chapter two 

of the same book. In the 5
th
 year of high school, several proofs in number theory 

(including induction) are covered in chapter four of Adamopoulos et al. (1998). 

Finally, in the 6
th
 year of high school, there is an optional logic course 

(Anapolitanos et al., 1999) which is not mathematically oriented and is never 

taught.  

In Cyprus, a relatively extensive chapter on logic and proofs was introduced 

in high schools in 2017. That was a significant change as since the 80ôslogic was 

not covered and few proofs were done in high school
9
. The chapter is covered in 

the 5
th
 year of high school, in chapter one of Demetriou et al. [2017]. As it is stated 

in the book
10

:
 

 
"The book has a two-fold role to fulfill: to introduce the student in the syllogistic that 

is expressed by the unsurpassable logico-inductive system of mathematics and also to 

respond to the modern mathematical demands. All the material included in the 

present book, [é] is intended on the one hand to help the students understand the 

mathematical logic and thought and on the other to contribute to the mathematical 

education of the country." (Demetriou et al., 2017)  

 

I am not sure if the book achieves its objectives and it certainly has its 

problems,
11

 yet it looks like a step in the right direction for Cyprusô educational 

state of affairs. It contains informal proofs, it does not distract student with 

unnecessary logical formalities, and it is kept relevant to mathematics.  

It seems that Greek and Greek-Cypriot curriculums are diverging regarding 

logic, but converging regarding proof. I am not aware of what, if any, studies were 

considered in order to decrease or increase logic in the two curriculums and what 

                                                           
9
Before the 80ôs, Cyprus was basically following the Greek educational system and books. 

Some Greek books are still used in Cyprus even today. 
10

My translation. 
11

For a book with twelve authors much more was expected. It was criticized unofficially on the 

Facebook group ΜαθηματικοίΚύπρου (Cyprus Mathematicians) in 2017. The text feels that it was 

written in a rush and contains some mistakes. For example, negations of quantified propositions are 

poorly discussed (p.23), there are omissions whether a number is "real" or "integer" in examples 

(p.11), numerical errors (p.13), etc. There seems also to be a confusion regarding "propositions" and 

"propositional functions" (p.24). Kyriakopoulos also points out to a misunderstanding of 

"necessary" and "sufficient" conditions in an example that uses Bernoulliôs Inequality (p.51). All the 

above and some suggestions/corrections are included in an unpublished article by Theodoros 

Tsaggaris, posted in the group above in 2017. I am not aware if some or any material in the book 

were improved later.   
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objectives are expected to be achieved
12

. Nevertheless, it does not seem to me that 

either curriculum is aware of the conceptual gaps between propositional logic and 

mathematics. Truth tables and syllogisms are not very useful when we prove 

things in mathematics. Propositional logic is at best a "warm up" to the predicate 

logic, which is indeed the appropriate logic for mathematics, and several things 

from the former could be omitted. From predicate logic some things are important 

and could perhaps be covered before the section on mathematical proofs. The two 

curriculums though do keep the formalities to a minimum, since increasing the 

formalities in proofs, as we argued, does not improve proof doing or understanding 

and it might even hinder mathematical experience and process.  

 

 

Conclusion 
 

The basics of predicate logic form the foundation of mathematics and proof 

lies at the heart of mathematical practice. Yet, even though mathematical logic is 

required in mathematics, its strict symbolism and formal rules are rarely used in 

mathematics whose mathematical symbolism, language and methods are rigorous 

yet less formal. The difference of these two approaches (formal-informal) affects 

doing, teaching and learning mathematics. Some argue that a proof is complete 

only if it is done formally. Others insist that requiring formalities actually inhibits 

mathematical activity and progress. Formal proof checking and verifying is 

tediously long and is nowadays done by powerful computer programs with 

minimal errors, but we are still far from computerized proof making. Some also 

doubt whether formalizing mathematics serves any mathematical or pedagogical 

purpose.  

In class experience from teaching Discrete Mathematics showed that some of 

the sections and some of the formalities of logic, taught usually in the beginning of 

the course, are not necessary for the subsequent important chapters on proof. Also, 

empirical evidence from studentsô responses revealed that to a large extend 

students relate rigor with understanding and not formalism. They related formalism 

more to computer reasoning and natural language to human reasoning. As students 

also found informal proofs more rigorous than pictorial proofs, because it 

contained essential information, notation and explanations, it seems that the 

students followed a middle ground indicating that even a minimal use of natural 

language plays an important role in understanding as only symbols or figures are 

not enough.  

                                                           
12

As we have seen, studies in general are not in agreement on the relevance of logic in mathematical 

understanding and performance. The Greek studies on this topic are scarce, and I found only few 

related articles on proof mainly from the Proceedings of the 4
th
 and 6

th
 Pan-Hellenic Conferences of 

the Union of Researchers in Mathematics Education (Eɜ.Ⱥ.ȹɘ.ɀ). The most relevant article I found 

was an unpublished and undated article entitled "The Role of Logic in Teaching, Learning and 

Analyzing Proof" by Morou A. and Kalospyros N., which most likely was written after 2008. The 

authors examine "whether students in upper secondary schools can improve their reasoning and 

proof abilities by taking an introductory course in logic" (Morou and Kalospyros), and they 

conclude that they could. I contacted the authors for more details, but I never received a response.  
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Finally, what is the situation regarding logic in Greek and Greek-Cypriot high 

schools? We traced historically the curriculum changes regarding logic from the 

1900ôs and we saw that today Greek and Greek-Cypriot curriculums are diverging 

on the teaching of logic, but converging regarding proof. Neither curriculum 

seems to be aware of the conceptual gaps between logic and mathematics, and it is 

unclear whether they achieve their objectives. Nevertheless, both include logic as a 

chapter in a mathematics course, keeping it relevant to mathematics and keeping 

formalities to a minimum.  
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Appendix 

 

Questionnaire A 

 

Consider the theorem: 

 

           The sum of any two odd integers is even. 

 

Look at the two proofs below and answer the following questions:  

 

Proof1:  

Let x and y be arbitrary odd integers.  

Then, there exist integers m and n such that x = 2m + 1 and y = 2n + 1. 

Adding x and y we get x + y =(2m + 1) +(2n + 1) = 2m +2n + 2 = 2(m+n + 1) = 2k, 

where k = m+n + 1. 

Therefore,  x + y =2k , which means that x + y is even.  

 

Proof2:  

1.     odd(x)                                        premise 

2.     odd(y)                                        premise 

3.     )12( +=$ zxz                         1, definition of odd 

4.     )12( +=$ zyz                         2, definition of odd 

5.     12 += mx 3, existential instantiation 

6.     12 += ny                                4, existential instantiation 

7.     )1(2 ++=+ nmyx 5, 6, algebra 

8.     )2( zyxz =+$ 7, existential generalization 

9.     even(x + y)8, definition of even 

10.   odd(x)Øodd(y) ­ even(x + y)      1-9, conditional proof     

11.   x" [odd(x)Øodd(y) ­ even(x + y)]     10, universal generalization   

12.   y" [odd(x)Øodd(y) ­ even(x + y)]     11, universal generalization   

 

1. Which proof from the ones above establishes the result more rigorously? Why?  

 

 

 

2. Which proof from the ones above you understand better and you would 

communicate to others? Why?  

 

 

 

 

3. Which proof from the ones above prompts you to explore similar questions? Why?  

 

 

 

 

4. Which proof from the ones above is more appropriate for computers? Why?  
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Questionnaire B 

 

Consider the theorem: 

 

                                  (a+b)
2 
- (a - b)

2
 = 4ab ,  a, b reals. 

 

Look at the two proofs below and answer the following questions:  

 

Proof 1
1313

:   

 
 

 

Proof2:  

Using the perfect square identity twice, the left-hand side is:  

(a + b)
2
- (a - b)

2 
= a

2
+2ab + b

2
- (a

2 
- 2ab + b

2
)  

                            = a
2
+2ab + b

2
 - a

2
+2ab - b

2
 

                            = 4ab 

which equals the right-hand side.  

 

 

1. Which proof from the ones above establishes the result more rigorously? Why?  

 

 

 

 

 

2. Which proof from the ones above you understand better and you would 

communicate to others? Why?  

 

 

 

 

 

3. Which proof from the ones above prompts you to explore similar questions? Why?  

 

 

 

 

 

4. Which proof from the ones above is more appropriate for computers? Why? 

 

 

 

                                                           
13

 Picture taken from https://bit.ly/2Z4N6Dx. 
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Questionnaire C 

 

Consider the following valid argument:  

 

                                           All computer science majors are people 

       Some computer science majors are logical thinkers 

                                          Therefore, some people are logical thinkers 
 

Which of the two reasonings below helps you more to understand the argumentôs 

validity? Why?  

 

Reasoning 1:   

 
 

 

Reasoning2:  

1.   )]()([ xPxCx ­"                   premise 

2.    )]()([ xLxCx Ø$                     premise 

3.    )()( cLcC Ø                             2, existential instantiation 

4.    )()( cPcC ­ 1, universal instantiation 

5.     C(c)                                          3, simplification 

6.     P(c)                                          4, 5, modus ponens 

7.     L(c)                                          3, simplification 

8.    )()( cLcP Ø 6, 7, conjunction 

9.    )]()([ xLxPx Ø$                     8, existential generalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Athens Journal of Education February 2020 

  

119 

Some Studentsô Responses 

 

Questionnaire A 

 

 
 

Questionnaire B 
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Questionnaire C 

 

 

 

 


